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DEVELOPMENT AND APPLICATION OF COMPATIBLE
DISCRETIZATIONS OF MAXWELL’S EQUATIONS ∗

D. WHITE †, J. KONING ‡, AND R. RIEBEN §

Abstract.
We present the development and application of compatible finite element discretizations of elec-

tromagnetics problems derived from the time dependent, full wave Maxwell equations. We review
theH(curl)-conforming finite element method, using the concepts and notations of differential forms
as a theoretical framework. We chose this approach because itcan handle complex geometries, it is
free of spurious modes, it is numerically stable without the need for filtering or artificial diffusion, it
correctly models the discontinuity of fields across material boundaries, and it can be very high order.
Higher-orderH(curl) andH(div) conforming basis functions are not unique and we have designed
an extensible C++ framework that supports a variety of specific instantiations of these such as stan-
dard interpolatory bases, spectral bases, hierarchical bases, and semi-orthogonal bases. Virtually any
electromagnetics problem that can be cast in the language of differential forms can be solved using
our framework. For time dependent problems a method-of-lines scheme is used where the Galerkin
method reduces the PDE to a semi-discrete system of ODE’s, which are then integrated in time us-
ing finite difference methods. For time integration of wave equations we employ the unconditionally
stable implicit Newmark-Beta method, as well as the high order energy conserving explicit Maxwell
Symplectic method; for diffusion equations, we employ a generalized Crank-Nicholson method. We
conclude with computational examples from resonant cavity problems, time-dependent wave propaga-
tion problems, and transient eddy current problems, all obtained using the authors massively parallel
computational electromagnetics codeEMSolve.

Key words.
Computational electromagnetics, Maxwell’s equations, vector finite elements, high order meth-

ods,H(curl) andH(div) - conforming methods, discrete differential forms, spurious modes, numeri-
cal dispersion, wave propagation, transient eddy currents, electromagnetic diffusion

1. Introduction. The equations of electromagnetics can be simply and el-
egantly cast in the language of differential geometry, moreprecisely in terms of
differential forms orp-forms [1], [2], [3]. In this geometrical setting, the fun-
damental conservation laws are not obscured by the details of coordinate system
dependent notation; and, the governing equations can be reformulated in a more
compact and clear way using well known differential operators of the exterior
algebra such as the exterior derivative, the wedge product,and the Hodge star op-
erator, see [4] for an introduction to differential forms. In this context, a natural
framework for the modeling of electromagnetics is provided. For example, the
electric potentials can be represented by 0-forms; electric and magnetic fields by
1-forms; electric and magnetic fluxes by 2-forms; and scalarcharge density by
3-forms.
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In the context of Galerkin approximations, the choice of thefinite element
space plays a crucial role in the stability and convergence of the discretization. For
instance, in numerical approximations of the magnetic and electric field intensi-
ties,H(curl) -conforming finite element spaces (or edge elements) are preferred
over traditional nodal vector spaces since they eliminate spurious modes in eigen-
value computations and they prevent fictitious charge build-up in time-dependent
computations. The lowest orderH(curl) -conforming basis functions were devel-
oped by Whitney [5] before the advent of finite element programs. Arbitrary order
versions were introduced by Néd́elec [6],[7] as a generalization of the mixed fi-
nite element spaces introduced by P.A. Raviart and J.M. Thomas in [8] forH(div)
-conforming methods. For an extensive analysis of severalH(div) -conforming
methods see [9].

Recently, Hiptmair, motivated by the theory of exterior algebra of differ-
ential forms, presented a unified framework for the construction of conforming
finite element spaces. Remarkably, bothH(curl) andH(div) conforming finite
element spaces and the definition of their degrees of freedomand interpolation
operators can be derived within this framework, see [10] formore details. In sim-
ple terms the finite element basis functions satisfy discrete counterparts of the De
Rham exact sequence and related commuting diagrams. The architecture of our
EMSolvesoftware closely mimics the structure of differential forms. In our soft-
ware terminology, a discrete differentialp-form is a finite element basis used to
discretize ap-form field. In EMSolvethe global discrete exterior derivative and
Hodge operators are sparse matrices, and the rules of differential forms define
how these matrices can be combined to represent discretizations of PDE’s. Given
a physical law expressed in the language of differential forms, it is therefore quite
straightforward to discretize the problem usingEMSolve.

One unique feature ofEMSolveis the emphasis on high-order discretiza-
tion which can reduce the mesh size, memory usage, and CPU time required to
achieve a prescribed error tolerance. This is particularlytrue for electrically large
problems. For these problems it is known that the Galerkin discretization error is
larger than the best approximation error of the finite element space. This is some-
times referred to as the pollution effect, and has been more precisely explained in
[11],[12]. In the engineering community this is referred toas numerical disper-
sion, as the computed phase velocity differs from the physical phase velocity and
phase error builds up linearly with respect to distance and time. For the popu-
lar lowest order edge elements, it is known that the numerical dispersion relation
is second order accurate [13], [14],[15]. Second order accuracy may seem ade-
quate, but for an electrically large problem the phase errormay be such that the
global error is 100 percent even though the local truncationerror is quite small. A
detailed analysis of dispersion for higher-orderH(curl) finite elements on orthog-
onal Cartesian meshes is given in [16], with the result that the dispersion error is
asymptoticallyO(h2k) wherek is the order of the basis functions.

It should be noted that there are numerous numerical schemesfor electro-
magnetics that are based in part on differential forms and related geometrical
concepts, such as the cell method [17], finite integration theory [18], [19], and
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mimetic discretizations [20]. Even the most popular methodfor time-domain
computational electromagnetics, Yee’s FDTD method [21], has been reinterpreted
from a geometric perspective by numerous authors [22], [23].

2. Numerical Formulation. We begin with the generic boundary value prob-
lem stated in the language of differential forms from [24]. This problem statement
is generic in that the degree of the forms are not specified. Byspecifying the de-
greep we have equations involving the divergence, gradient, or curl operators.
We assume a 3-dimensional domainΩ with piecewise smooth boundary∂Ω par-
titioned intoΓD, ΓN, andΓM. The problem statement is

du= (−1)pσ d j = −Ψ+Φ in Ω(2.1)

TDu = f on ΓD TN j = g on ΓN(2.2)

j = ⋆α σ Ψ = ⋆γ u in Ω(2.3)

TM j = (−1)p ⋆β TMu on ΓM.(2.4)

Hereu is a (p− 1)-form, σ is a p-form, j is a (3− p)-form, and bothΨ
andΦ are(3− p+1)-forms, where 1≤ p≤ 3. The variableΦ is a source term.
The symbolsα,β andγ denote generic material constitutive relations (e.g. elec-
tric permittivity or conductivity). In (2.1) the operatord is the exterior derivative
which mapsp-forms to(p+1)-forms. In the boundary conditions (2.2) and (2.4)
the symbolT denotes the trace operator, where the trace of ap-form is an integral
over ap−1-dimensional manifold. In (2.3) and (2.4) the⋆ symbol denotes the
Hodge-star operator, which convertsp-forms to(3− p)-forms and typically in-
volves material constitutive properties. Equations (2.1)and (2.3) can be combined
to yield the general second-order elliptic equation

(−1)pd⋆α du= −⋆γ u+Φ.(2.5)

The wedge product of differential forms is used in the definition of bilinear
forms. The wedge product of ap-form ω and aq-form η is a(p+q)-form ζ

ωp∧ηq = ζ(p+q), p+q≤ 3.

If p+ q = 3 thenωp∧ηq is an volumetric energy density like quantity and can
be integrated over a volume to yield energy. Ifp+ q = 2 thenωp∧ηq is a flux
density like quantity and can be integrated over a surface toyield net flux.

A Galerkin finite element solution of the generic second-order equation (2.5)
will require bilinear forms. Using the exterior algebra, the bilinear forms required
in the Galerkin finite element method can be easily formulated from the general
second-order equation (2.5) by taking the wedge product with a (p−1)-form v
and integrating over the volumeΩ,

∫

Ω
(−1)pd⋆α du∧v = −

∫

Ω
⋆γ u∧v+

∫

Ω
Φ∧v.

Using the integration-by-parts formula
∫

Ω
dω∧η+(−1)p

∫

Ω
ω∧dη =

∫

∂Ω
ω∧η
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yields the two key symmetric bilinear forms

a(u,v) =
∫

Ω
⋆α (du)∧dv,(2.6)

b(u,v) =
∫

Ω
⋆γ u∧v.(2.7)

and the additional bilinear forms for source terms and boundary conditions

c(u,Φ) =
∫

Ω
u∧Φ

d(u,g) =
∫

∂Ω
⋆α du∧g.

Let H p =
{

u∈ L2(Ω) : |||u|||2p < ∞
}

and H p
0 =

{

u∈ H p : TD(u) = 0
}

be
generic Hilbert spaces, where|||u|||2p =

∫

Ω u∧⋆u+
∫

Ω du∧⋆du. Then the Galerkin
form of the generic second-order equation (2.5) can now be expressed as follows:

Given the source functionΦ and the boundary condition g, find u∈ H p such
that

TD(u) = g anda(u,v) = b(u,v)+c(u,Φ)+d(u,g), ∀v∈ H p
0 .

It is not necessary to combine the two 1st-order equations into a single 2nd
order equation. If it is desired to formulate the problem as acoupled pair of
1st order equations, as in a mixed method [8], [25], [26], [9], then an additional
bilinear form is required, namely

e(u,v) =
∫

Ω
⋆α (du)∧v,(2.8)

with the requirement thatu is a p-form andv is a(p+1) form. With the generic
bilinear forms (2.6), (2.7), and (2.8), source terms, and boundary conditions we
can construct a wide variety of model equations that can be solved via the finite
element method.

We are primarily concerned with time dependent phenomena. The time
derivative does not effect the degree of a form. For the generic wave equation
we simply add time derivatives to (2.1) which yields

du= (−1)p ∂σ
∂t

, d j = −
∂ψ
∂t

+Φ in Ω(2.9)

In the Tonti diagram below we show the time-dependent Maxwell’s equations,
whered denotes the spatial derivative,∂

∂t denotes the time derivative and converg-
ing arrows denote summation. In these diagramsφ is the 0-form scalar potential;
the 1-formsA, E, andH are the magnetic vector potential, the electric field, and
the magnetic field, respectively; the 2-formsB, D, andJ are the magnetic flux
density, the electric flux density, and the electric currentdensity, respectively; and
ρ is the 3-form scalar charge density. The left diagram encompasses Faraday’s
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law dE− ∂
∂t B = 0, Coulomb’s law for the magnetic fielddB= 0, and the fact that

the electric fieldE can be written in terms of potentials asE = dφ− ∂
∂t A. The

right diagram encompasses Ampere’s lawdH− ∂
∂t D = J, Coulomb’s law for the

electric fielddD= ρ, and the continuity equationdJ− ∂
∂t ρ = 0. The two diagrams

are connected by the constitutive relationsD = ⋆ε E andB = ⋆µ H.

0-forms : φ




y
d

1-forms : A
− ∂

∂t−−−−→ E H




y
d





y
d





y
d

2-forms : B
− ∂

∂t−−−−→ 0 D
− ∂

∂t−−−−→ J




y
d





y
d





y
d

3-forms : 0 ρ
− ∂

∂t−−−−→ 0

A wave equation can be derived by combining the two diagrams and solving
for E,

∂2

∂t2 (⋆εE) = d⋆µ−1 dE−
∂
∂t

J.(2.10)

This wave equation resembles the generic second order equation (2.5) with the
addition of temporal derivatives. Clearly, if it is determined that one of the time
derivatives is small and can be neglected, the result is an electromagnetic diffusion
equation (parabolic PDE). Therefore the same bilinear forms (2.6)) and (2.7) are
required for spatial discretization of either the elliptic, hyperbolic (wave equation)
or parabolic (diffusion equation) problem.

2.1. Local Finite Element Operations. We follow the work of Ciarlet [27]
and adhere to the definition of a finite element as a set of threedistinct objects
(Σ,P ,A ) such that:

• Σ is the polyhedral domain over which the element is defined
• P is a finite dimensional polynomial space from which basis functions

are constructed
• A is a set of linear functionals (Degrees of Freedom) dual toP

Let Σh be a discretization of the problem domainΩ using tetrahedral, hexahedral,
or prismatic elements. By using a local change of variables given by the iso-
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parametric mappingΦ(Σ̂) = Σ, we re-write the bilinear of (2.6) as follows

a(u,v) =
∫

Ω
⋆α du∧dv

= ∑
Σ∈Σh

∫

Σ=Φ(Σ̂)
⋆α du∧dv

= ∑
Σ∈Σh

∫

Σ̂
(⋆α ◦Φ) Φ∗ (du∧dv) |DΦ|

= ∑
Σ∈Σh

∫

Σ̂
(⋆α ◦Φ) Φ∗(du)∧Φ∗(dv) |DΦ|.(2.11)

Similarly, the bilinear form of (2.7) can be rewritten as

b(u,v) = ∑
Σ∈Σh

∫

Σ̂
(⋆β ◦Φ) Φ∗(u)∧Φ∗(v) |DΦ|.(2.12)

Equations (2.11) and (2.12) show that all calculations for the various bilin-
ear forms can be performed on a standard reference elementΣ̂ (i.e. the unit cube,
tetrahedron, or prism). Results are then transformed to physical mesh elements
(of arbitrary curvature) via a set of well defined transformation rules based on the
properties of differential forms. These rules are summarized in Table 1. Given
these transformations the bases need only be evaluated on the reference element
and transformed accordingly. InEMSolvethe bilinear form requires that the ref-
erence element, the quadrature rule, and thep-form basis functions be specified
just once. The basis functions are then sampled at the quadrature points on the
reference element, and this information is cached for latter use. This gives rise to
a very computationally efficient algorithm for computing finite element approxi-
mations. For a given element topology and basis order, the basis functions only
need to be computed once. Then, for every element of the same topology in the
mesh, the results from the reference element can simply be mapped according to
the transformation rules. This can significantly reduce computational time for a
typical finite element computation. In addition, integration over the reference el-
ement is much simpler and can often be done exactly using Gaussian quadrature
of the appropriate order.

When implementing a finite element spaceP in the context of differential
forms, the explicit formulation of the space depends on thep-form and the topol-
ogy of the reference element. The construction of the finite element spaceP is
not unique, we choose a construction that leads to a simple and efficient imple-
mentation. We use uniformly spaced interpolatory polynomials similar to those
described in [28] and [29] as aprimitive basison a reference element. The actual
bases used in the finite element procedure are constructed onthis reference ele-
ment Σ̂ rather than in the physical coordinate system and are written as a linear
combination of the primitive basis. For example, non-uniform interpolatory func-
tions, moment-based functions, orthogonal functions, etc. can all be expressed as
a linear combination of the primitive basis
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The construction of ap-form basis of orderk is as follows. We begin by
generating a primitive basisW = {w j}. We can then construct a new basis (non-
uniform interpolation, hierarchical, etc.) in terms of theprimitive bases by im-
posing a set of constraints of the form

αi(w j) = δi j ,(2.13)

whereαi ∈ A are the known degrees of freedom of the new basis. The degrees
of freedom are in general integral moments, but this is not necessary. What is
necessary is that the degrees of freedom satisfy the following:

• Unisolvence: {αi} is dual to the finite element spaceP ; i.e. there exists
a set{w j} ⊂ P such thatαi(w j) = δi, j .

• Invariance: degrees of freedom remain unisolvent upon a change of vari-
ables; this implies they are not affected by the pullback operation; i.e.
Φ∗(αi) = α̂i .

• Locality: the trace of a basis function on a sub-simplex is determinedby
degrees of freedom associatedonlywith that sub-simplex.

The procedure requires the formation of a linear system

Vi j = αi(w j); w j ∈W

This system, which is similar to a Vandermonde matrix, is a linear mapping which
expresses the new basis in terms of the primitive basis and will have a rank equal
to the dimension of the primitive basis. The newly defined basis, which we will
denote asW′ is given by:

W′ = V−1W

In EMSolve, the construction and solution of the Vandermonde system isdone
once and only once on the reference element. For the evaluation of the basis
functions on an actual (or global) element, they are first evaluated on the reference
element then transformed according to the transformation rules of Table 1, where
the “hat” symbol denotes objects defined with respect to the reference element
coordinate system. It is important to note that this processimplies that the basis
functions have units as shown in Table 2. In standard nodal-based finite element
methods the basis functions are dimensionless and the unknowns (the unknown
coefficients of the basis function expansion of the field) aresimply the value of a
field at a point, but here the unknowns are integrals of the field. This seems to be a
common theme of all compatible discretization schemes of Maxwell’s equations
whether they are based upon the finite element method given here, or mimetic
finite volume [20] and finite difference [22] methods.

We have a class hierarchy for each of thep-form bases, the partial hierarchy
is shown in Figure 1. Concrete classes are presented in the lowest level of the tree.
The otherp-forms have a similar inheritance diagram. The complete class library
is documented in [30], [31], [32]. Our Silvester-Lagrange (SL) bases are similar
to the bases defined in [28] which use equidistant and shiftedequidistant interpo-
lation points. The difference between our SL bases and the bases proposed in [28]
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TABLE 1
Transformation rulesΦ∗

Φ∗(u) Φ∗(du)

0-forms û DΦ−1(dû)

1-forms DΦ−1û 1
|DΦ|DΦT(dû)

2-forms 1
|DΦ|DΦT û 1

|DΦ| (dû)

TABLE 2
Units of Electromagnetic Quantities, Basis Functions, andDegrees-of-Freedom

Form Basis Function Electromagnetic Quantity DOF

0-forms 1 φ (Volts) Volts
1-forms m−1 E (Volts/m) Volts
1-forms m−1 H (Amps/m) Amps
2-forms m−2 D (Coulombs/m2) Coulombs
2-forms m−2 B (Webers/m2) Webers
2-forms m−2 J (Amps/m2) Amps
2-forms m−2 E×H (Watts/m2) Watts
3-forms m−3 E ·D (Joules/m3) Joules
3-forms m−3 ρ (Coulombs/m3) Coulombs

is that ours satisfy the properties in Table 1. The uniformlyspaced interpolatory
bases are suitable for low order approximations,i.e., k = 1 to 4. It is well known
that this particular choice of interpolation points produce badly conditioned mass
and stiffness matrices when high order approximations are used. For this rea-
son we have implemented spectral classes that use arbitrarysets of interpolation
points, typically Gauss-Lobatto or Tchebyschev points. A study of the condition-
ing of finite element matrices using various higher-orderH(curl) discretizations
is given in [33]. An additional class of semi-orthogonal basis functions was de-
veloped by the authors in order to increase the efficiency of the method. These
basis functions are paired with a custom quadrature rule to minimize the number
of non-zeroes in the mass matrices. This is an extension of the standard mass-
lumping procedure widely used in computational mechanics.For the special case
of an orthogonal Cartesian mesh the mass matrix is made diagonal, resulting in
a tremendous increase in efficiency, particularly for higher-order bases applied to
time dependent problems. For unstructured meshes the basisfunctions are not
completely orthogonal but the number of non-zeros is decreased by a factor of
5 or more. While these inexact quadratures are often considered a “variational
crime”, in practice there is no loss of accuracy in the computed solution [34].
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FIG. 1. p-Form basis function class hierarchy. Only part of the hierarchy is shown. The general
idea is that the Application Program Interface is defined at the higher levels, and the unique details
of each type of basis function are implemented at the lower levels. Users can easily add new basis
functions to the class hierarchy, and the client program need not be modified at all.

2.2. Global Finite Element Operations. The EMSolveframework com-
putes sparse matrices which are global versions of the previously described bi-
linear forms. The basic matrices are

Mp(α)i j =
∫

Ω
αWp

i Wp
j dΩ(2.14)

Sp(α)i j =
∫

Ω
αdWp

i ·dWp
j dΩ(2.15)

Dp(p+1)(α)i j =
∫

Ω
αdWp

i ·Wp+1
j dΩ(2.16)

which we refer to as the “mass”, “stiffness”, and “derivative” matrices, respec-
tively. The “mass” matricesM are square symmetric positive definite, and the
“stiffness” matricesS are square symmetric positive semi-definite. These two
matrices mapp-forms to p-forms. The “derivative” matricesD are rectangular
and mapp-forms to(p+1)-forms. It can be shown that

Dp(p+1) = Mp+1Kp(p+1)(2.17)

Sp =
(

Kp(p+1)
)T

M(p+1)Kp(p+1)(2.18)

whereKp(p+1) is a “topological derivative” matrix. This matrix is the discretiza-
tion of the exterior derivative operatord from differential geometry,dWp =W(p+1).
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This matrix depends upon the mesh connectivity, but is independent of the nodal
coordinates. It does not involve an integral over the element, and it does not in-
volve any material properties. For the special case of first-order basis functions,
the topological derivative matrix is a mesh incidence matrix consisting of 0’s,
+1’s, and−1’s. While seemingly abstract, the topological derivative matrix is
enormously valuable in practice. Given ap-form quantityX with basis function
expansion

X =
n

∑
i=1

xiW
p

i ,(2.19)

and a(p+1)-form quantityY with basis function expansion

Y =
n

∑
i=1

yiW
(p+1)
i ,(2.20)

the exterior derivative (gradient, curl, divergence forp = 0, p = 1, andp = 2,
respectively) is given by

y = Kp(p+1)x.(2.21)

It can be shown that

K12K01 = 0(2.22)

K23K12 = 0(2.23)

which are the discrete versions of the identities∇×∇F = 0 and∇ ·∇×F = 0,
respectively. These identities are satisfied in the discrete sense, to machine pre-
cision, for any mesh and any order basis function. This is a key feature (perhaps
the definition of) a compatible discretization. It is these identities that ensure
computed solutions of Maxwell’s equations are solenoidal,whether in eigenmode
computations or time-dependent computations.

EMSolvecontains some additional miscellaneous functionality. Insome cir-
cumstances it is necessary to convert ap-form to a(3− p)−form, i.e. a Hodge-
star operation. A classic example is converting a ”cell-center” quantity to a
”nodal” quantity. In our finite element setting the Galerkinprocedure prescribes
rectangular matrices of the form

Hp(3−p)
i j =

∫

Ω
Wp

i ∧W(3−p)
j dΩ(2.24)

which produces optimal (in the least-square error sense) Hodge-star operators for
arbitrary order basis functions.

To summarize the overall numerical procedure employed inEMSolve, the
first step is to identify the correctp-form for the physical quantities. This then
dictates the particular basis function expansion of the physical quantity. A generic
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field variableX is then approximated over each elementΣ∈ Σh by a basis function
expansion of the form

Xp(r, t) = ∑
i

αi(t) wp
i (r), wp

i ∈Wp
h(2.25)

whereαi(t) are the time-dependentp-form degrees of freedom,wp
i (r) are the spa-

tially dependentp-form basis functions. The semi-discrete system is formed by
applying the Galerkin procedure resulting in combinationsof the mass matrices
M, the stiffness matricesS, the derivative and topological derivative matricesD
and K. The result is a systematic procedure for discretizing a wide variety of
electromagnetics equations.

3. Frequency Domain Resonant Cavity Examples. TheEMSolveframe-
work is well suited for simulations in the frequency domain.Here we focus
on the resonant cavity problem, where the goal is to compute the electromag-
netic fields within closed perfectly conducting cavities that may contain dielectric
and/or magnetic materials. The starting point is the vectorHelmholtz equation for
the electric field

d⋆µ−1 dE = −ω2 ⋆ε E(3.1)

The electric field is chosen instead of the magnetic field because the perfect elec-
trical conductor conductor boundary conditionn×E = 0 is trivial to implement
when using a 1-form basis function expansion forE.

Using the Galerkin procedure described in Section 2, the linear system of
equations for the discretized eigenvalue problem is

S11
µ−1e = −ω2M11

ε e,(3.2)

wheree is the vector of 1-form degrees-of-freedom. The exact solution of (3.1)
has irrotational eigenmodes corresponding toω = 0 and solenoidal eigenmodes
corresponding toω 6= 0, with all these modes being orthogonal. This 1-form based
discretization preserves the Helmholtz decomposition exactly, with no additional
constraints. The irrotational solutions of (3.2) satisfy

eirrotational = K01f,(3.3)

wheref is an arbitrary discrete scalar potential, and the solenoidal solutions of
(3.2) satisfy

(esolenoidal)
T M11K01f = 0,(3.4)

i.e. they are orthogonal to the gradients of the scalar potentials. Alternative finite
element discretizations using vector nodal basis functions discretizations intro-
duced spurious modes, i.e. modes that are not solenoidal. This was first analyzed
by Bossavit [35] and Cendes [36], and was historically the primary impetus for
using edge-basedH(curl) -conforming basis functions in electromagnetics.
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Applying general purpose iterative eigenvalue solvers to the H(curl) dis-
cretized Helmholtz equation is often problematic due to thelarge null space of
the system. The large degeneracy of zero-eigenvalues can cause iterative methods
to fail to converge on the desired smallest non-zero eigenvalues. The authors have
developed a method to shift the zero eigenvalues corresponding to the irrotational
solutions of the Helmholtz equation arbitrarily to the middle of the spectrum [37].
The implicitly restarted Arnoldi method package (ARPACK) [38] is then used to
solve for the smallest extremal eigenvalues which are now non-zero.

3.1. Lowest Resonant Mode for the Trispal Induction Cell. The paral-
lel version of the ARPACK code, PARPACK, was used to determine the lowest
eigenvalue and eigenmode for the Trispal induction cell. This induction cell is a
key component of a proposed proton linear accelerator [39] and is used as a metric
for various Helmholtz equation solvers. The Trispal geometry was decomposed
into a refined and optimized tetrahedral mesh and a hexahedral mesh as shown in
Figure 2. The tetrahedral mesh contained 61,566 zones and 76,838 edges while
the hexahedral mesh contained 26,568 zones and 84,807 edges. Results for the

FIG. 2. The optimized tetrahedral mesh and unoptimized hexahedralmesh for the Trispal geom-
etry. The mesh is of 1/8 of the geometry.

computed lowest eigenvalue withk = 1 basis functions compared with the mea-
sured eigenvalue, frequency=1064.415 MHz, for each mesh are shown in Table 3.
The results were not any better for a higher-orderk = 2 discretization, indicating
that the accuracy for this problem is limited by the discretization of the geometry.
The goal for this type of resonant cavity problem is agreement to measurement to
within 0.01%, achieving this level of validation requires precise agreement of the
CAD geometry and the test article. The z-component of the resulting eigenmode
for the hexahedral mesh is shown in Figure 3.

4. Electromagnetic Wave Equations. Consider Maxwell’s equations in a
charge free region, written in the language of differentialforms

⋆ε
∂
∂t

E = d(⋆µ−1B)−⋆σE−J(4.1)
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TABLE 3
Trispal Eigenvalues

Mesh Calculated Frequency (MHz) Relative Error (%)

Tetrahedral 1066.45 0.19

Hexahedral 1084.12 1.85

FIG. 3. The computed Z component of the lowest electric field eigenmode for the Trispal geometry.

∂
∂t

B = −dE(4.2)

d⋆ε E = 0(4.3)

dB= 0(4.4)

where the electric fieldE is a 1-form, the magnetic flux densityB is a 2-form,J is
an independent 2-form current source, and each of the material property functions
are represented by a specific Hodge function. For simplicitythe required bound-
ary conditions and initial conditions are not shown here. Byapplying the exterior
derivative operator to both (4.1) and (4.2), it is clear thatthe divergence constraints
of (4.3) and (4.4) are constraints on the initial conditionsof the fields. While this
is not universally accepted, it is our opinion that a compatible discretization of
Maxwell’s equations will not require any penalty method or Lagrange multiplier
method to satisfy the divergence constraints, they will be intrinsically satisfied
by the discretization of equations (4.1) and (4.2). Of course the divergence con-
straints of (4.3) and (4.4) are satisfied according to a particular, but consistent,
discrete metric. For the electric field the divergence is measured in the variational
sense

∫

Ω
d⋆ε E∧Φ =

∫

Ω
⋆εE∧dΦ,(4.5)
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for all test functionsΦ not on the boundary, since this measure allows for the
jump discontinuity inE. For the magnetic flux density the divergence is computed
directly.

Using the procedures described in Section 2, the semi-discrete Ampere-
Faraday system of equations is

M11
ε

∂
∂t

e(t) =
(

K12)T
M22

µ b(t)−M11
σ e(t)−M11

ε j(t)(4.6)

∂
∂t

b(t) = −K12 e(t)

wheree(t) andb(t) are the vectors of unknown degrees-of-freedom. The diver-
gence equations are discretized as

(

K01)T
M11

ε e= 0

K12b = 0

and by the compatibility properties (2.22)-(2.23) these conditions will be satisfied
automatically, to the tolerance used in the solution of the mass matrices.

There are several methods for integrating (4.6) in time, thestaggered 2nd-
order central difference or “leapfrog” method being quite popular. The leapfrog
method is conditionally stable and energy conserving. The leapfrog method is an
example of a class of methods known as symplectic methods, which were orig-
inally developed for Hamiltonian systems. A high order and energy conserving
time-integration of (4.6) is given by a generalized symplectic update [40]

[

en+1

bn+1

]

=

(

m

∏
i=1

Qi

)

[

en

bn

]

(4.7)

wherem is the order of the symplectic integration method and the matricesQi are
of the form

Qi =

[

I βi ∆t (M11
ε )−1(K12)TM22

µ

−αi ∆tK12 I − αi βi ∆t2K12 (M11
ε )−1(K12)TM22

µ

]

(4.8)

and∆t is the discrete time step. The specific integration coefficients αi andβi

of (4.8) can be found in [41]. Note that the standard definition of a symplectic
integrator requires that the length of the vectorsen andbn be the same, and they
are not in our case, hence we use the term symplectic loosely.A straightforward
but tedious calculation shows that for suitably small∆t the eigenvalues of theQi

lie on the unit circle, and the eigenvectors ofQi are linearly independent, hence
the time integration method is neutrally stable. The stability condition is given by

∆t ≤
2

√

ρ
(

αi βi K12 (M11
ε )−1(K12)TM22

µ

)

; i = 1, . . . ,m(4.9)
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whereρ denotes the spectral radius of the matrix, and in practice this is esti-
mated by performing a few power-method iterations to estimate the largest eigen-
value. Stated another way, (4.9) requires that the samplingfrequency (determined
by ∆t) must be less than half the highest resonant frequency of thespatial dis-
cretization. The stability condition of (4.9) is valid for all values ofk, the or-
der of the polynomial basis functions. However, ask is increased, the value of
ρ
(

K12 (M11
ε )−1(K12)TM22

µ

)

(and hence the highest resonant frequency of the
spatial discretization) will grow, thus requiring a smaller time step∆t. For the spe-
cial case of lossless materials and no energy entering/exiting the volume through
the bounding surface the total electromagnetic energy should be constant. With
this class of symplectic time integration the instantaneous energy stored in the
electric and magnetic fields is

eTM11
ε e+bTM22

µ b = Ẽ +O(∆tk+1)sin(ωt),(4.10)

the energy oscillates about the constant valueẼ . This is in contrast to non-
symplectic methods such as Runge-Kutta, in which the energyis a monotonically
decaying function. In [42] it is shown that the symplectic update method can
be extended to include electric and magnetic conductivity,for example artificial
Perfectly Matched Layers.

4.1. Transmission in a Bent Optical Fiber. There is great interest in ana-
lyzing the performance of bent optical fibers [43], [44]. A weak bend can be an-
alyzed using efficient paraxial beam propagation methods, here we demonstrate
an accurate full wave simulation of a fiber with an extreme bend. We visualize
the propagation of an optical pulse along a 155µmsection of a step index optical
fiber. The core of the fiber has a radius of 5µmand an index of refraction of 1.471
while the cladding has a radius of 40µmand an index of refraction of 1.456. With
these properties, the fiber is capable of propagating aλ = 1.55µmoptical wave.
The ratio of problem domain size to wavelength is thereforeΩ/λ = 100 making
this an “electrically large” problem. The problem is excited with a space and
time dependent Dirichlet boundary condition applied to theinput cap of the fiber
representing a TE01 polarized pulse.

We perform the simulation using a straight fiber as referenceand four bent
fibers with different bend angles. Because the problem is electrically large, it will
be subject to the cumulative errors of numerical dispersion. To mitigate this effect,
we use high order polynomial basis functions of degreek = 2 in conjunction with
a high order symplectic (energy conserving) integrator of orderm= 3 which has
been shown to excel at reducing the effects of numerical dispersion for electrically
large time domain problems [40]. The computational mesh foreach of the five
simulations consists of 147,200 hexahedral elements with 4 transverse elements
per wavelength, an example of which is shown in Figure 4. Using high order
k = 2 basis functions on this mesh results in a semi-discrete linear system (4.6)
consisting of 3,562,160 electric field unknowns and 3,547,072 magnetic flux
density unknowns. This relatively large problem must therefore be solved in a
parallel computational environment. In Figure 5 we plot thenormalized energy in
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FIG. 4. Example of bent optical fiber mesh (left) and snapshot of the electromagnetic energy in
the 30 degree bent fiber at time t= 0.4ps.

the fiber core, computed by (4.10), as a function of time for each of the five fiber
simulations. The energy is normalized to the total energy ofthe optical pulse. As
expected, the total pulse energy is conserved. As the fiber isbent, the energy in the
core is lost due to radiation in the cladding as the pulse traverses the bend. This
effect becomes more drastic as the bend angle increases and as time increases.
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FIG. 5. Normalized core energy as a function of time for five fiber simulations.

4.2. 3D Photonic Crystal Waveguide. Here we simulate a 3D PBG waveg-
uide with a complete photonic band-gap designed to operate in the RF regime.
The PBG crystal is based on the “woodpile” structure as investigated by [45]. In
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particular, we utilize the unit cell originally proposed by[46] which consists of
a series of aluminum rods (index of refraction= 3.1) arranged in an alternating,
stacked configuration. The lattice constant for this crystal is 1.123cmand the unit
cell has dimensions of 1.123cm by 1.123cm by 1.272cm making it suitable for
operation in the radio frequency regime. We construct a 3D crystal by arranging
the unit cell in a 9 by 13 by 7 layer configuration as shown in Figure 6. Our goal
is to exploit the complete photonic band gap of this crystal and create a “multi-
bend” wave guide where we can make the radio signal traverse two separate 90
degree bends in three dimensional space. Because of the 3D nature of the multi-
bend, this type of simulation cannot be performed using standard 2D codes which
are extensively used in the study of PBG devices. In addition, trustworthy sim-
ulations of PBG waveguides require that phase velocities ofpropagating waves
be computed as accurately as possible. A high order method istherefore highly
desirable for an electrically large waveguide such as this.

The computational mesh of Figure 6 consists of 419,328 hexahedral ele-
ments. We excite the problem with a time dependent Dirichletboundary condition
applied at thex-z input plane with an operating frequency of 11GHz. The rest of
the mesh is terminated with a PEC boundary condition. We use high orderk = 2
basis functions to represent the electric and magnetic fields resulting in a linear
system with approximately 10.5 million unknowns. This large linear systems re-
quires that the problem be distributed in parallel across 150 processors. We let
the simulation run for a total of 6,500 time steps. In Figure 7 we show a three
dimensional iso-surface plot of the electric field magnitude in the wave guide at
the end of the simulation. Note how the wave has made two complete 90 degree
bends with a negligible loss due to radiation.

FIG. 6. 3D PBG “woodpile” structure for
RF signals. The portion of the mesh represent-
ing the air has been removed for visual clarity.

FIG. 7. Three dimensional iso-surface
plot of electric field magnitude for the 3D PBG
simulation.

4.3. Simulation of Magnetic Resonance Imaging. When a magnetic field
penetrates a conducting object, eddy currents are produced. These eddy currents
modify the magnetic field resulting in a non-uniform magnetic field in the con-
ductor. This fact is of significant relevance in the field of magnetic resonance
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imaging (MRI) where the characterization of field non-uniformities inside of a
human head are of great research interest. In a typical MRI experiment, a very
large (1-8 Tesla) and static magnetic field (called theB0 field) is used to align
the magnetic moments of atomic nuclei inside of a human tissue sample. A sec-
ondary pulsed RF field (called theB1 field) is used to tip the magnetic moments
when turned on. When turned off, the magnetic moments relax back to their
original state, emitting radiation that is detected by an RFreceiver. TheB1 field
determines image intensity and imaging algorithms assume aspatially uniform
B1 field; non-uniformB1 fields lead to artificial variation in image intensity. If
the actual non-uniform magnetic field were known, it might bepossible to correct
for this in the image processing.

Unlike the previous examples which involved propagation ina loss-less re-
gion, this application requires the introduction of a lossyterm due to finite electri-
cal conductivity. Also, the goal here is to reach a sinusoidal steady-state solution,
and due to the fine mesh a very large number of time steps would be required if
conditionally stable time integration method were used. Wetherefore employ an
implicit time integration method. In particular, we use theimplicit Newmark-Beta
method given by

(

M11
ε +β∆t2S11

µ−1 +
dt
2

M11
σ

)

en+1 =
(

2M11
ε − (1−2β)∆t2S11

µ−1

)

en(4.11)

−

(

M11
ε +β∆t2S11

µ−1 −
dt
2

M11
σ

)

en−1−dt2M11j′n

Note that this is a fully discrete version of the second orderelectric field wave
equation (2.10) with the addition of a lossy conductive term.

In this example we useEMSolveto compute the eddy currents and non-
uniform magnetic field inside a 10cmconducting, dielectric sphere immersed in
a spatially uniform and time varying 200MHz B1 magnetic field. The external
B1 field is created by a pair of Helmholtz coils, driven by a 200 MHz sinusoidal
current source represented by thej′n term in (4.11). A human head is modeled by
a conducting dielectric sphere of conductivityσ = 0.5S/mand dielectric constant
85ε0 as shown in Figure 8. The fully discrete (4.11) is solved for anet physical
time equal to 10 periods ofB1 field oscillation, enough time for the induced eddy
currents to reach a steady state. In Figure 9 we show the induced eddy currents and
the resulting non-uniform magnetic field inside of the sphere. Note the appearance
of the so called “central-brightening” effect in the magnetic field magnitude, a
result in agreement with the theoretical calculations of [47], [48]. Results such as
these can be used to calibrate MRI images to account for the non-uniformity of
theB1 field.

5. Electromagnetic Diffusion Equations. Solution of the Ampere-Faraday
system of equations (4.1)-(4.2) are electromagnetic wavesthat propagate at the
speed of light in the medium. However in many applications the time scales
are such that it is not desired to resolve the wave nature of the fields. In some
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FIG. 8. Conducting dielectric sphere rep-
resenting a human head placed between two
Helmholtz coils.

FIG. 9. Computed eddy currents
(vertical plane) and non-uniform magnetic field
(horizontal plane) inside of conducting dielec-
tric sphere.

problems the electric field satisfies
∣

∣

∣

∣

⋆ε
∂
∂t

E

∣

∣

∣

∣

≪ |⋆σE|(5.1)

and the⋆ε
∂
∂t E term can be neglected without serious consequence. This is a

definition of a good conductor, for example copper withε = 8.854· 10−12 and
σ = 5.76·107 is a good conductor for frequencies up to the MHz range. The elec-
tric field is not zero in a good conductor, rather the correct statement is that in a
good conductor the displacement current is negligible compared to the conduction
current. To continue with the copper example, a dimensionalanalysis indicates
a characteristic field diffusion time ofτ = σµL2 whereL is the characteristic di-
mension of the block. Usingµ = 4π · 10−7 andL = 1m, this diffusion time is
several orders of magnitude longer than the time it takes theEM wave to traverse
the conductor. By not resolving the EM wave, we do not have stability conditions
or accuracy conditions that involve the speed of light. Thisis the motivation for
ignoring the displacement current term.

Neglecting the displacement current, Maxwell’s equationsbecome

d(⋆µ−1B)−⋆σE−J = 0(5.2)

∂
∂t

B = −dE(5.3)

d⋆σ E = 0(5.4)

dB= 0(5.5)

Note that (5.4) is not independent from (5.2), it is a consequence of the identity
ddψ = 0 (we assume the independent source satisfiesdJ = 0 also.) Likewise,
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(5.5) is not completely independent of (5.3), as clearly we will have dB= 0 for
all time if it is satisfied initially. While not necessary, we will employ potentials to
solve this problem. Equation (5.5) implies thatB = dA for some magnetic vector
potentialA. ReplacingB with dA in (5.3) givesE = − ∂

∂t A−dφ whereφ is some
scalar electric potential. At presentφ is somewhat arbitrary, andφ can be made
to agree with the standard electrostatic potential by enforcing the Coulomb gauge
condition onA, resulting in

d⋆σ A = 0(5.6)

d⋆σ dφ = 0(5.7)

Combining these equations gives a diffusion equation forA,

⋆σ
∂A
∂t

= d⋆µ−1 dA−⋆σdφ−J,(5.8)

which along with the the constraints (5.6) and (5.7) and appropriate boundary
conditions provides a well-posed PDE. Note that as in the discretization of the
full-wave Maxwell’s equations in Section 4, the divergenceconstraint on the 1-
form field, in this case (5.6), will be implicitly satisfied for all time if it is initially
satisfied. The advantage of this formulation compared to anH-based method or
an E-based method is that the electrostatic potentialφ appears explicitly in the
PDE, this is useful in solving engineering problems in whichthe voltage across
a conductor is the known boundary condition. The disadvantage of theA-φ ap-
proach is of course the required elliptic solve for (5.7), but with the advent of
scalable multi-grid solvers this is less of an issue than it used to be.

Again using the definitions in Section 2, the semi-discrete equations are
given by

M11
σ

∂
∂t

a = −S11
µ a−D01

σ v+ j1(5.9)

S00
σ v = f0(5.10)

wherea is the vector of degrees-of-freedom ofA, v is the vector of degrees-
of-freedom ofφ, andj and f are the discrete volume and surface source terms,
respectively.

Given A, it is possible to compute the magnetic flux densityB, the electric
field E, and the electric current densityJ. SinceA is a 1-form andB is a 2-form
andB = ∇×A we have

b = K12a.(5.11)

This is a purely topological operation, no integration or material properties are
involved. The computation ofE is also trivial, usinge to denote the degrees-of-
freedom for the electric field, the semi-discrete electric field equation is

e = −
∂
∂t

a−K01v.(5.12)
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If required, a 2-form electric currentJ can be computed fromJ = σE, this is an
example of a Hodge-star operation and requires the inversion of a “mass” matrix.

For the numerical time integration, we apply a generalized Crank-Nicholson
method by averaging a first-order forward difference at timen with a first-order
backward difference at time(n+1). The averaging is performed with a weighting
parameterα, where 0≤ α ≤ 1, such that

α =







0 Explicit, 1st Order Accurate Forward Euler
1/2 Implicit, 2nd Order Accurate Crank Nicholson
1 Implicit, 1st Order Accurate Backward Euler

The fully discrete equations are given by

S00vn+α = f0(5.13)
(

M11
σ +α∆tS11

µ−1

)

an+1 =
(

M11
σ − (1−α)∆tS11

µ−1

)

an(5.14)

−∆tD01vn+α +∆tj1

bn+1 = K12an+1(5.15)

en+α = −1/∆t (an+1−an)−K01vn+α(5.16)

M22
σ−1jn+α = H12en+α(5.17)

where it is assumed that the boundary conditions and currentsources can be eval-
uated att = n+ α. Note that to maintain second order accuracy for all variables,
the magnetic potentialA and the magnetic fluxB are known at whole timesn,
whereas the electric potentialΦ and the electric fieldE are known at intermediate
times(n+ α). For some problems, striving for accuracy by usingα = 1/2 will
lead to oscillations in the computed solution, and in such cases it is necessary to
use standard Backward Euler (α = 1).

5.1. Electromagnetic Heating and Forces in a Simple Rail Gun Model.
In this example we use the vector potential formulation of the electromagnetic
diffusion equations to compute theJ×B forces andJ ·E joule heating in a simple
rail-gun model. A rail-gun is a device used to launch projectiles using only elec-
tromagnetic energy and accurate characterization of the electromagnetic forces
and heating is required for trustworthy modeling. The rail gun model consists of
two conducting rails and a sliding armature placed between them. Note that in
this simple simulation, the motion of the armature is not taken into account, we
are simply computing the transient eddy currents and magnetic fields for the case
of a fixed armature. The motion of the armature will effect thefields when the ve-
locity is comparable to the diffusion time. The rails and armature are placed in a
cubic mesh representing the air. In reality, the conductivity of the air is essentially
zero, however due to the nature of the FEM discretization, wecannot simply set
this term to zero in the air region, so we make it significantlysmaller (7 orders of
magnitude) than the conductivity of the rails and armature.While not an elegant
solution, this great disparity in conductivity is a good test of the proposed formu-
lation. The problem is driven by applying a constant voltagedifference across the
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rail inputs. At timet = 0, the scalar Poisson equation is solved via a fast multi-grid
method to compute the static scalar potential everywhere inspace. This in turn
induces transient eddy currents and magnetic fields which gradually build over
time to steady state value as shown in Figure 10. The fully discrete vector poten-
tial equation (5.15) usingα = 1/2 is solved at every time step using a diagonally
scaled Pre-conditioned Conjugate Gradient (PCG) method with a relative residual
error tolerance of 10−10. This linear solver required an average of 300 PCG iter-
ations, in spite of the large contrast in conductivity values. PCG worked well for
this relatively modest problem with 161,280 elements and∼ 500,000 unknowns,
but for larger problems PCG is impractical; a scalable multigrid solver tuned for
the∇×∇× operator should be used [49] [50]. In Figure 11 we plot the computed
vector force field and scalar Joule heat field for two different armature positions.
Note that a net outward force is generated and the Joule heating is strongest at the
corners of the armature contact position. Note also that as the armature is moved
further along the rails, the net inductance and resistance of the rail gun circuit
increases, causing the induced force and heat to decrease.

FIG. 10. Computed scalar potential (left) and steady state eddy currents and magnetic fields
(right) in a simple rail gun model.

6. Conclusions. When the Galerkin finite element method is applied to elec-
tromagnetics problems using the standard nodal shape functions the results are
quite disappointing, and fail to converge for even trivial problems. While adding
penalty terms or Lagrange multipliers involving the divergence of the fields im-
proves the situation, these methods cannot be considered a fundamental cure. The
problem is not with the Galerkin procedureper se, but with the choice of finite
element basis functions. Numerous researchers have proposed variousH(curl)
-conforming andH(div) -conforming based finite element basis functions that re-
sult in provably stable discrete variational formulationsof electromagnetics prob-
lems. Aspects of differential forms such as exact sequenceshave had a signifi-
cant impact on the development of these basis functions. In addition, we believe
that differential forms provide a unified way for organizingand implementing a
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FIG. 11. Computed J×B force field and J·E joule heating for two different armature positions.

sophisticated simulation code so that it can be used to solvea wide class of prob-
lems, in fact virtually any problem that can be expressed in the language of differ-
ential forms. This has been demonstrated in the context of electromagnetics with
theEMSolvecode. However not all PDE’s can be simply cast in the languageof
differential forms. Developing compatible discretizations for multi-physics prob-
lems, that involve not just curl and divergence equations but also advection of
materials and fields, is likely to be an important area of future research.
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[6] J. C. Ńed́elec. Mixed finite elements in R3.Numer. Math., 35:315–341, 1980.
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